vision:: Extend my capabilities by an order of magnitude through AI inference that understands my complete context, goals, and patterns
goal:: Build a transparent, learning system that vectorizes all my interactions (text, audio, visual) into a searchable second brain, uses this context to enhance LLM interactions, and continuously improves through real-time feedback
## System Architecture
### Core Components
- **Input Pipeline**: Raw vectorization gateway - minimal preprocessing to preserve information density
- **Second Brain**: Multi-modal vector storage with contextual, hierarchical, and temporal awareness
- **AI OS**: Orchestration layer that searches second brain, assembles context, and engineers prompts for maximum LLM effectiveness
- **LLM Layer**: External/internal inference models (GPT-4, Claude, local models)
- **Feedback Loop**: Ground-up pipeline with metadata storage for continuous improvement
### Data Flow
```
Any Input → Multimodal Embedding Pipeline → Second Brain → Control Logic → Proactive Actions
↑ ↓
└────── Training Feedback Loop ←─────┘
```
```
User Query → Small LLM → "I need contexts A, B, C" → RAG searches → Assembled context → Big LLM → Response
↑ ↑
(routing step) (expensive inference)
```
### System Architecture Diagram
```mermaid
graph TB
subgraph "Input Sources"
A1[Text/Documents]
A2[Audio Conversations]
A3[Internet Content]
A4[Images/Visual]
A5[LLM Interactions]
end
subgraph "Input Pipeline"
B1[Raw Vectorization<br/>Minimal preprocessing]
B2[Git Commit Versioning]
B3[Metadata Tagging]
end
subgraph "Second Brain"
C1[Hierarchical Index<br/>Doc→Section→Para→Sent]
C2[Temporal Index<br/>Time-weighted vectors]
C3[Contextual Index<br/>Query-aware chunks]
C4[Vector Store<br/>768D shared space]
end
subgraph "AI OS - Orchestration Layer"
D1[Query Router]
D2[RAG Search<br/>Multi-index retrieval]
D3[Context Assembler<br/>Goals/Projects/History]
D4[Prompt Engineer<br/>Dynamic templates]
end
subgraph "LLM Layer"
F1[GPT-4/Claude/Local]
F2[Inference]
F3[Response]
end
subgraph "Feedback System"
E1[Implicit Signals<br/>Clicks/Ignores/Rephrase]
E2[Explicit Ratings]
E3[Benchmark Suite]
E4[Preference Learning]
end
A1 & A2 & A3 & A4 & A5 --> B1
B1 --> B2
B2 --> B3
B3 --> C1 & C2 & C3
C1 & C2 & C3 --> C4
C4 --> D2
D1 --> D2
D2 --> D3
D3 --> D4
D4 --> F1
F1 --> F2
F2 --> F3
F3 --> E1 & E2
E1 & E2 --> E3
E3 --> E4
E4 -.-> D3
E4 -.-> D4
style B2 fill:#f9f,stroke:#333,stroke-width:4px
style E3 fill:#9f9,stroke:#333,stroke-width:4px
style D3 fill:#bbf,stroke:#333,stroke-width:4px
```
## Technical Architecture Deep Dive
### Input Pipeline - Raw vs Clean Data
**Minimal preprocessing is key** - With embeddings and LLMs, raw data often outperforms heavily cleaned data because:
- Context is preserved (typos, speech patterns, informal language)
- Personal communication style remains intact
- LLMs handle messiness better than traditional NLP
- Only clean: encoding issues, extreme formatting problems
### Token Limits for Context Injection
- **GPT-4 Turbo**: 128k tokens (~300 pages)
- **Claude 3**: 200k tokens (~500 pages)
- **Gemini 1.5 Pro**: 1M tokens (~2500 pages)
- **Practical limit**: 20-50k tokens for cost/latency balance
### LlamaIndex: Framework or Components?
**LlamaIndex = Opinionated framework** with escape hatches:
- **What it provides**: Query engines, index structures, chains, loaders
- **What it enforces**: Document/node abstractions, callback system
- **Limitations you'll hit**:
- Rigid document model (hard to add custom metadata flows)
- Limited control over embedding batching
- Opaque prompt templates
- Hard to implement custom ranking algorithms
**Component-based alternative approach**:
- Use `langchain` for just chains/prompts
- `chromadb` or `qdrant` for pure vector ops
- Custom orchestration layer
- More work but full control
### Does Context Assembly Exist?
**Mostly you'll build it** - Current tools:
- LlamaIndex has basic `ComposableGraph` for combining indexes
- Langchain has `MultiVectorRetriever` for hierarchical search
- But dynamic goal/project/context assembly? That's custom
- GPT-4's function calling can help with routing logic
### Feedback & Learning (Built from Ground Up)
- **Metadata Storage**: Every interaction tagged for improvement tracking
- **Implicit Signals**: Click patterns, query refinements, result usage
- **Preference Learning**: Model/prompt selection based on success patterns
- **Automated Testing**: Benchmark suite for any system changes
## Implementation Roadmap (V1 Focus)
### Phase 1: Embedding Foundation & Benchmarking (Week 1)
- [ ] Set up git commit-based embedding versioning system
- [ ] Create benchmark suite from 5GB corpus (50-100 test queries)
- [ ] Test embedding models (MiniLM vs BGE vs Nomic)
- [ ] Build feedback tracking infrastructure
### Phase 2: Advanced RAG (Week 2)
- [ ] Implement hierarchical chunking with LlamaIndex
- [ ] Add contextual embeddings (query-aware dynamic chunks)
- [ ] Configure temporal weighting system
- [ ] Build custom reranker for your domain
### Phase 3: AI OS - Orchestration Layer (Week 3)
- [ ] Build context assembler for goals/projects/history
- [ ] Create routing logic (which indexes to search)
- [ ] Implement dynamic prompt engineering
- [ ] Add transparency layer (see why results were chosen)
### Phase 4: Integration & Feedback Loop (Week 4)
- [ ] Connect to LLMs via litellm
- [ ] Implement preference learning from implicit signals
- [ ] Create daily check-in conversation interface
- [ ] Set up A/B testing for prompt/model improvements
### V2 Features (Future)
- Audio input pipeline with emotion/urgency detection
- AI OS with proactive triggers
- Goal-oriented automation
- Multi-agent coordination
## Benchmarking Strategy
### Metrics
- **Retrieval**: Recall@K, Precision@K, MRR (Mean Reciprocal Rank)
- **End-to-End**: "Did user get needed information?" success rate
- **Latency**: Query response time across modalities
- **Drift**: Alignment with current user preferences over time
### Test Suite
- Representative queries from existing 5MB corpus
- Cross-modal retrieval tests (audio → related text)
- Temporal accuracy (recent vs outdated information)
- Intent classification accuracy
### Versioning Approach
- `main`: Current embeddings for live queries
- `feature/*`: Test new embedding approaches
- Tagged releases: Rollback points for performance regression
- Diff-based updates: Only re-embed changed documents
## Technical Stack (2025 Open Source)
### Recommended Approach: Hybrid
**Start with LlamaIndex for speed, plan to extract components**
### Core Components
- **Embeddings**:
- `sentence-transformers/all-MiniLM-L6-v2` (fast, good quality)
- `BAAI/bge-large-en-v1.5` (best open source quality)
- `nomic-ai/nomic-embed-text-v1` (long context: 8k tokens)
- **Vector Store Options**:
- `Qdrant` - Best performance, rust-based, excellent metadata filtering
- `ChromaDB` - Simplest setup, good DX, pure Python
- `Weaviate` - Best hybrid search, but heavier
- **Orchestration Layer**:
- Start: `LlamaIndex 0.10.x` for rapid prototyping
- Migrate: Custom Python with `fastapi` + `pydantic`
- Why: You'll need custom context assembly logic
- **LLM Integration**:
- `litellm` - Universal interface for all LLMs
- `guidance` - Better prompt control than Langchain
- Local: `ollama` + `llama-cpp-python`
- **Benchmarking**:
- `ragas` - RAG-specific metrics
- `pytest-benchmark` - Performance tracking
- Custom eval harness for your specific use cases
### Build vs Framework Decision Tree
```
If exploring/prototyping → LlamaIndex
If need custom control → Components
If production system → Start framework, extract components
```
### What LlamaIndex Actually Is
**Scaffolding that provides**:
- Document loaders (100+ sources)
- Index abstractions (vector, list, tree, graph)
- Query engines with routing
- Evaluation tools
- Observability/callbacks
**Not**:
- A vector database (uses others)
- An embedding model (uses others)
- An LLM (uses others)
- A web framework
Think of it as "RAG Rails" - opinionated patterns you can follow or break.
## Key Innovations
1. **Git-based Knowledge Versioning**: Track embedding evolution with rollback capability
2. **Multi-Embedding Per Source**: Combine semantic, emotional, and contextual vectors
3. **Transparent Processing**: Every decision visible for debugging and improvement
4. **Daily Conversation Integration**: Morning/evening check-ins for temporal triggers
## Open Architecture Questions
### AI OS Design
- **Query Decomposition**: How much happens in AI OS vs LLM? Where's the boundary?
- **Context Assembly**: Custom build needed - how to dynamically pull goals/projects/history?
- **Prompt Engineering**: Static templates vs learned/evolved prompts?
- **Router Logic**: Semantic similarity vs explicit rules vs learned behavior?
### RAG Optimization
- Should embeddings be query-dependent or query-independent?
- How to balance temporal decay vs topical relevance?
- Multi-vector retrieval: When to search different indexes?
- Reranking: Lightweight model or LLM-based?
### Feedback Integration
- Where to inject improvements: embedding layer, retrieval, or prompts?
- How to detect distribution shift in your second brain?
- A/B testing: How to run experiments without disrupting daily use?
- Preference learning: Implicit only or require explicit labels?
### Scale Considerations
- At what point does 5GB → 50GB → 500GB break the architecture?
- How to handle embedding versioning with growing corpus?
- Incremental vs full reindexing strategies?
## Current Status
- **Existing Assets**: 5GB textual data in Obsidian second brain
- **Current Setup**: Obsidian vector search plugin with Ollama
- **Immediate Priority**: Advanced embeddings + LLM integration + feedback loop
## Success Criteria (V1)
- Contextual search dramatically outperforms current static chunking
- LLM responses include relevant project/goal context automatically
- Visible improvement through benchmark metrics
- Daily conversation habit established with tangible productivity gains
- Clear feedback → improvement pipeline operational